当前位置:首页 > 休闲 > 从简单的整数到神秘的虚数,这些数的类型你必须搞懂!

从简单的整数到神秘的虚数,这些数的类型你必须搞懂!

2025-12-07 00:25:01 [焦点] 来源:江苏某某策划服务中心

数的从简世界:从简单到复杂的奇妙探险

你有没有想过,数是单的到神什么?

从小学开始,我们就被告知有 0, 1, 2, 3这些自然数,整数乌海市某某摩托车销售专卖店之后又认识了 负数分数,虚数接着又跳进了 无理数的类型大海,在高中的必须某个时刻还初识了更神秘的 虚数

数的搞懂世界就像是一个庞大的家族,有各种各样的从简“成员”,它们各自扮演着不同的单的到神角色。那么,整数今天我们就来一次有趣的虚数“数之世界”探险,看看它们是类型如何从简单到复杂,逐步构成数学的必须奇妙世界的。



自然数:数的搞懂乌海市某某摩托车销售专卖店起点

从最简单、最熟悉的从简自然数开始,即我们平时用来数东西的数:0, 1, 2, 3, 4, 5...。

自然数的一个重要特点是,它们永远不会是负数:在自然数家族里,大家都是积极向上的小伙伴。

自然数帮助我们理解最朴素的“计数”,是数学的起点。

整数:有了“冷酷”的负数

然而,生活并不会一直阳光明媚,我们会遇到零下摄氏度或银行账户里显示的“负余额”:信用卡透支或房贷(提到这个话题,笔者心里总是沉甸甸滴~)。

为了描述这种现象,我们引入了 整数。整数不仅包括正数,还包括 负数,以及它们之间的平衡者——0。因此,整数的完整集合是:

ℤ = { …, -3, -2, -1, 0, 1, 2, 3, …}

整数不仅帮助描述正向的世界,也让我们理解“负面”的现象。

有理数:分配的艺术



当我们学会把一个苹果分给两个人时,有理数就应运而生了。

有理数是可以表示为两个整数之比(即分数)的数,形式如下: a/b,其中 a, b ∈ ℤ, b ≠ 0

(我们没法把苹果分给“0”个人,所以分母不能为零,不然数学家真的会抓狂)。

  • 除以 0 没有意义:如果分母为 0,无法找到任何数乘以 0 得到非零的结果,这样就会导致数学上的矛盾。

有理数,比如 1/3, 355/106, -2/3,甚至整数本身也是有理数,因为它们总是可以写成 n/1 的形式。

有理数的作用无处不在,但凡涉及“分配”或者“比例”,它们就会闪亮登场。

实数:无理数的加入

有理数家族已经够庞大了,但你以为这就是全部了?不不不,欢迎来到更广阔的实数世界!实数不仅包括有理数,还包括那些无法用分数表示的“神奇数”——无理数



无理数的名字听起来有点“无理取闹”。要知道,古希腊毕达哥拉斯学派坚信,所有的事物都可以用整数或整数之比来表达:世界应当是整洁、有理且可以度量的。

不过其中一位成员希帕索斯在研究边长为 1 的等腰直角三角形的斜边长度时,发现结果竟然是 √2。他尝试用整数或分数来表达这个结果,可失败了——它无法用两个整数的比来表示,它的小数部分是无限不循环的,比如 √2 = 1.414213562373095...



就这样一直延续下去,还永远找不到重复的规律。

常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3 等。

因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。



代数数 vs. 超越数:谁更高深?

接下来,会遇到了两个稍微抽象的概念:代数数超越数

代数数是那些能够成为某个整数系数多项式方程解的数。比如,3x² - 9x + 6 = 0 的解是 x = 1 和 x = 2,因此它们两个是代数数。

代数数不仅包括有理数,还包括一些无理数。比如,√2 就是方程 x² - 2 = 0 的解,φ 是方程 x² - x - 1 = 0 的解,所以它们也都是代数数的一员。

但并不是所有的数都能被整数系数多项式方程“驯服”。有些数,无论你如何组合整数系数的多项式,它们都不会成为解。这些数被称为超越数。

最著名的例子就是 π 和 e。无论你怎么组合整系数的多项式,它们就是不愿意成为方程的解。

复数:虚数和实数的完美结合

你以为故事就到这里结束了?不,欢迎来到 复数的世界。复数是由一个实数部分和一个虚数部分组成的,形式为 a + b,其中 是虚数单位,也是方程 x² + 1 = 0 的解—— 也是一个代数数。



虚数听起来有点像魔法,但它们非常实用,特别是在物理学、电力学和工程中有广泛的应用。通过复数,人们可以处理那些仅用实数无法解决的问题。

数的世界远不止于此

数的世界远不止这些,还有许多更高级的数系等待探索。

比如,四元数八元数扩展了复数,帮助人们处理三维和更高维的旋转问题;p 进数则在数论中扮演着重要角色,它通过质数的视角重新定义了“距离”,并为数论中的整除性和同余问题提供了强有力的工具。还有 超复数,如 双曲数双数,它们在物理和工程中有着特殊的应用,尤其是在处理时空几何和自动微分问题时。如果你认为无穷小只是微积分中的抽象概念,那么 超实数将颠覆你的想法,它们让无穷小和无穷大的操作变得严格且可行。

每一种数系都是理解世界的钥匙。而你我,正站在这条通向无限的道路上,保持好奇心,勇敢追寻!

(责任编辑:焦点)

推荐文章
  • 学习新语|中法元首外交再写佳话

  • 中方对黎以局势可能进一步升级深表担忧

    中方对黎以局势可能进一步升级深表担忧 中国常驻联合国代表傅聪发言 资料图新华社联合国9月20日电记者潘云召)中国常驻联合国代表傅聪20日在安理会紧急审议黎以局势时表示,中方对黎以局势可能进一步升级深表担忧,呼吁所有各方保持最大限度的克制。 ...[详细]
  • 无锡虹桥医院已关停,住院患者已被陆续转移

    无锡虹桥医院已关停,住院患者已被陆续转移   无锡虹桥医院涉嫌欺诈骗保一案涉及的具体金额尚未公布,但骗保基本情况已基本查实。第一财经记者获悉,被采取措施的人员涉及该案的不同环节,涉案的具体细节也有望于近日进一步披露。  无锡虹桥医院涉嫌欺诈骗 ...[详细]
  • 小行星采样返回 天问二号计划明年发射

    小行星采样返回 天问二号计划明年发射   国家航天局今天9月24日)宣布,在完成嫦娥六号任务后,中国探月工程还将通过2次发射任务,为国际月球科研站打基础,最快将在2026年执行第一次发射任务。除了探月工程相关任务稳步推进,我国深空探测的多 ...[详细]
  • 传奇之路,东契奇成为奥尼尔后首位连续五场两双的湖人球员

    传奇之路,东契奇成为奥尼尔后首位连续五场两双的湖人球员 北京时间今日,在NBA常规赛中,湖人队在主场以133-121击败了鹈鹕队。本场比赛,东契奇出战35分04秒,22投9中得到了34分12篮板7助攻1抢断1盖帽,三分球12中4,罚球14中12,出现了2次 ...[详细]
  • 北京市档案馆将开放一批国庆庆典档案

    北京市档案馆将开放一批国庆庆典档案 本报讯(记者 刘苏雅)今年是新中国成立75周年。市档案馆昨天介绍,该馆将在国庆节前专题开放馆藏首都庆祝“十一”“五一”筹委会、首都大型群众集会指挥部联合全宗,以及中国共产主义青年团北京市委员会全宗,共 ...[详细]
  • 英特尔或被高通收购,双方已在谈判!曾经的芯片霸主如今“卖身续命”?

    英特尔或被高通收购,双方已在谈判!曾经的芯片霸主如今“卖身续命”? 据熟悉内情的知情人士透露,美国高通公司与英特尔公司就收购事宜进行过接洽,双方最近的一次会谈就发生在“最近这几天”。 这笔交易一旦最终达成,将成为美国科技界很多年以来规模最大的一次并购交易。与此同时,这 ...[详细]
  • 380亿能源巨头大动作

    380亿能源巨头大动作 【导读】广汇能源拟斥资164.8亿元,投建“伊吾广汇煤炭项目”中国基金报记者 卢鸰广汇能源9月20日晚公告,公司拟投建“伊吾广汇1500万吨/年煤炭分质分级利用示范项目”,投资总额为164.8亿元。 ...[详细]
  • 马杜罗证实近日曾与特朗普通话

    马杜罗证实近日曾与特朗普通话   当地时间12月3日,委内瑞拉总统马杜罗在一场公开讲话中确认,约十天前,他已与美国总统特朗普进行电话通话,并形容交流“在相互尊重的氛围中进行”,显示双方有意开启对话渠道。  马杜罗表示,这次通话是相 ...[详细]
  • 每日网签

    每日网签 北京商报讯记者 王寅浩 李晗)北京市住建委官网数据显示,9月21日北京新房网签134套,网签面积11237.2平方米,其中住宅网签93套,网签面积10213.86平方米;二手房网签208套,网签面积1 ...[详细]